Received 27 February 2006

Accepted 29 March 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Da Tang,^{a,b} Gui-Yun Duan,^a Da-Tong Zhang^a and Jian-Wu Wang^a*

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ^bTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China

Correspondence e-mail: yugp2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.005 Å R factor = 0.046 wR factor = 0.120 Data-to-parameter ratio = 8.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,3-Di-*p*-toluoyl-(2*R*,3*R*)-tartaric acid ethyl acetate solvate

In the title compound, $C_{20}H_{18}O_8 \cdot C_4H_8O_2$, all bond lengths and angles in the di-*p*-toluoyltartaric acid molecule are normal. The structure is stabilized by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds in addition to van der Waals interactions.

Comment

2,3-Di-*p*-toluoyl-(2R,3R)-tartaric acid is an important chiral reagent and is widely used in chiral resolution of amines (Rogers *et al.*, 1989; Ward *et al.*, 1988). In this paper, we report the crystal structure of the title compound, (I).

Fig. 1 shows the structure (I), which crystallizes in the orthorhombic space group $P2_12_12_1$. All bond lengths and angles in the di-*p*-toluoyltartaric acid molecule are normal

© 2006 International Union of Crystallography All rights reserved View of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Packing diagram of (I), viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

(Table 1) and comparable to those found in published structures (Romanelli *et al.*, 1988; Chen *et al.*, 2003). The dihedral angle between the planes of the C2–C7 and C14–C19 benzene rings is 35.6 (3)°. The structure is stabilized by intra- and intermolecular O–H···O and C–H···O hydrogen bonds in addition to van der Waals interactions.

Experimental

2,3-Di-*p*-toluoyl-(2R,3R)-tartaric acid was synthesized by reaction of (2R,3R)-tartaric acid (0.01 mol) and *p*-toluoyl chloride (0.02 mol) in toluene (20 ml) at 298 K over a period of 4 h in a yield of 86% (3.3 g). Crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of two weeks.

Crystal data

$C_{20}H_{18}O_8 \cdot C_4H_8O_2$	Z = 4
$M_r = 474.45$	$D_x = 1.246 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 7.8516 (13) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 16.140 (3) Å	T = 298 (2) K
c = 19.951 (3) Å	Block, colourless
V = 2528.4 (7) Å ³	$0.58\times0.36\times0.28$ mm
Data collection	

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.946, T_{\max} = 0.973$ 12875 measured reflections 2558 independent reflections 2115 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$ $\theta_{\text{max}} = 25.0^{\circ}$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0677P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.1698P]
$wR(F^2) = 0.120$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2558 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
317 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, $^\circ).$

O3-C10	1.296 (4)	O6-C12	1.320 (4)
O4-C10 O5-C12	1.187 (4) 1.184 (4)	C9-C10	1.522 (4)
C8-O2-C9 C13-O7-C11	115.6 (2) 116.2 (2)	C23-O10-C22	118.5 (3)

Table 2			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots O9^{i}$ $O6-H6\cdots O4^{ii}$	0.96(5) 0.82(4)	1.63(5) 1.92(5)	2.585 (3) 2.697 (3)	173 (4) 159 (4)
$C24 - H24C \cdots O5^{iii}$	0.96	2.57	3.328 (5)	136
$C11-H11A\cdots O3$ $C11-H11A\cdots O8$	0.98	2.53 2.23	2.872 (4) 2.618 (4)	100

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) x - 1, y, z.

C-bound H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C–H = 0.93–0.98 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ for aryl and methine H atoms or $1.5 U_{\rm eq}({\rm C})$ for methyl H atoms. H atoms of the OH groups were located in a difference Fourier map and refined freely. In the absence of significant anomalous dispersion effects, Friedel pairs were merged and the absolute configuration was assumed from the synthesis.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H., Wu, J., Guo, R.-W., Yeung, C.-H. & Zhou, Z.-Y. (2003). Acta Cryst. E59, o1254–o1256.
- Rogers, G. A., Parsons, S. M., Anderson, D. C. & Nillsson, L. M. (1989). J. Med. Chem. 32, 1217–1230.
- Romanelli, M. N., Gualtieri, F., Valle, G., Brasili, L. & Angeli, P. (1988). J. Med. Chem. 31, 1703–1708.
- Sheldrick, D. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Ward, T. J., White, J. F., Lattimer, N. & Rhodes, K. F. (1988). J. Med. Chem. 31, 1421–1426.